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J. Phys.: Condens. Matter 4 (1992) 45834594. Printed in the UK 

General formulae for the special points and their weighting 
factors in k-space integration 

Juichiro Hamat and Masaaki Watanabet 
t Depanment of Materials Physics. Facully of Engineering Science, Osaka University, 
Ibyo~ka, Osaka 560, Japan 
t Faculty of lkhnology, Kinki University, Higashi-llimshima, Hiroshima 729-17, Japan 

W i v e d  10 June 1991, in 6nal form 2 January 19yL 

AktraeL General formulae are given for providing sets of the special points and their 
weighting factors for k-space integration without the use of a recurrence pees for 
cubic, hexagonal and tetragonal lattices. The formulae are allowed to be used for 
intermediate numben of k-points not considered in the method of chadi and Cohen. It 
is s h m  Ihat the special-point method is an open-type Lagrange quadrature of lowest 
order and that it gives accurate values for moderately valying functions but less accurate 
values for those with discontinuous derivatives at Lhe Brillouin wne boundaries. I n  the 
present method it is passible U) incorporale the second-order Lagrange quadrature and 
the Gaussian methcd. The dliciencies of these methods are discussed in comparison 
with the correctly weighted tetrahedron method. 

1. Introduction 

The special-point method proposed by Chadi and Cohen (cc) [l] has been used 
extensively in many theoretical studies of solid state physics for k-space integration 
of a periodic function f(k) over the Brillouin zone (BZ). For a moderately varying 
function this method has made it possible to calculate the integral more accurately 
than the ordinary tetrahedron integration (TI) method for relatively small numbers 
of k-points selected appropriately in the irreducible BZ (IBZ), which is the smallest 
segment of the BZ reduced by the isogonal point-group symmetry of the lattice 121. 
A set of the special points is derived from the recurrence process successively with 
the use of a seed point chosen deliberately in the IBZ for a next approximation, and 
their weighting factors are obtained by applying the symmeay operations to newly 
obtained k-points and counting the numbers of non-equivalent b-points. 

Despite its efficiency the cc method has no general formulae for locating the 
special points in the IBZ and calculating their weighting factors, so that finding them 
becomes tedious for higher-order approximations. Owing to the non-uniqueness of 
the cc method, several different sets of the special points and their weighting factors 
are proposed 13, 41. From an alternative approach, Monkhorst and Pack [5] have 
devised a method which generates the special points for the FCC and BCC lattices by 
using the super-cubic BZ of a simple-cubic lattice, although they did not give formulae 
for calculating the weighting factors. Recently Macot and Frank [6] have derived the 
general formulae which determine the special points and their weighting factors for 
the square and cubic lattices without use of the recurrence process. Their method, 
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however, is confined to the cc scheme, so that possible numbers Nk of the special 
points are limited and Nk increases rapidly as the order of approximation becomes 
higher: Nk = 1,2,10,60,408,. . . and 1,2,8,40,240,. . . for the FCC and BCC 
lattices, respectively. Thus general formulae for obtaining intermediate values of Nh 
may be useful because in many interesting m e s  of application the calculation of f(k) 
is much more involved and time consuming than the numerical integration itself. In 
some applications of the special-point method the calculated values are very slowly 
convergent with respect to Nk, so that its improvement without loss of simplicity is 
also useful. 

In this paper we shall present the general formulae for giviig the special points 
in the 1BZ and the corresponding weighting factors explicitly. In section 2 we describe 
the formalism and show that the special-point method is an open-type Lagrange 
quadrature of lowest order and propose a secondader improved scheme. In section 3 
we apply the present method to the cubic lattices and show that it is possible to use 
the formulae for intermediate values of Nw In section 4 and appendix 1 we show 
that the present method can be applied to the hexagonal and tetragonal lattices. In 
section 5 the efficiency of the special-point method is discussed in comparison with 
the correctly weighted TI method including quadratic interpolation scheme and the 
Gaussian method. 

J Hama and M Watanabe 

2. Formalism 

We now express a wavevector X: and a translation vector R in the direct lattice as 

where b, and t,, respectively, denote the basis vectors of the reciprocal and direct 
lattices and 1, is an integer. A totally symmctnc function f(k) with the periodicity 
of the reciprocal lattice can be written as 

where S is an element of the symmetry group of the system with its order of N, and 
1, denotes a set of 1, for S B  In the following, we suppress N;’ CS and express 
1, as 1 for simplicity. From (2.2) the integral of f(k) over the BZ with the volume 
C2 is written as 

I = - f ( k ) d k  = F(0). hL 
Using N as the number of k-points in the BZ, we express (23) as 

N 

I = xw(qj)f(qj) + R N  
j=1 
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where w ( q j )  is the weighting factor of a point qj and is normalized to unity and the 
remainder R ,  is given by 

where the prime means the exclusion of the 1 = 0 term. The central idea of the 
special-point method is to reduce R, within a required accuracy by using the smallest 
set of gj, because for many interesting cases of application the calculation of f ( k )  is 
very time consuming. 

Although we finally locate k-points in the 1 B g  we adopt at present the paral- 
lelepiped zone whose three edges are given by b,, b, and b* This is not usually the 
standard BZ but a primitive zone which has the same volume as the B Z  We define 
k-points in the zone by (2.1) with qj-points given as 

qj, = (l/nm)(%, - 1 ) + ~ ,  - $ ( j ,  = 1,’&...,n,) (2.6) 

where a, takes an arbitraly value in the range 0 < a, < l /na .  The weighting factor 
of qj is assumed to be w(qj) = 1 / N  with N = nln2n,. Using (2.6) we find 

(27) 

Equation (2.7) shows that the second sum in the remainder R, vanishes unless all 
l,/n, are equal to integers for n, > 1. Thus the set of E-points defined by (2.1) and 
(2.6) has the characteristics of the special points. The non-uniqueness of the special- 
point method results from the arbitrariness of the values of a,. If we take a, = 0 or 
l/n, with all even n,-values and a, = 1/2n,, equation (26) corresponds to the 
scheme obtained by the correctly weighted TI method IS] and to that by Monkhorst 
and Pack, respectively. Owing to the lattice symmetry the severa1 k-points given by 
(2.1) and (26) are equivalent if the values of a, are chosen appropriately, so that 
we can restrict the non-equivalent 12-points in the IBZ, although a slight modification 
in the treatment is necessary for non-primitive Bravais lattices. If the lattice has a 
secondader symmetry perpendicular to the axis b,, the choice of a, = 1/2n, is 
most preferable and that of a, = 0 or 1 /ne  is the next preferable choice in reducing 
the number of non-equivalent k-points in the IBZ 

From the derivation of the special points we found that the special-point method 
is simply an open-type Lagrange quadrature of lowest order and that the remainder 
is expressed in terms of partial derivatives of f(q) as 

where p = 2 and 6, takes a value in the range -; < 6,  < 4 and 6 = & and -& 
for a, = 1/2n, and l/n,, respectively. As is seen in (B), the convergence of the 
special-point method with respect to ne is very slow. We can, however, show that, if 
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f (  q )  is a well behaved function of class C,, it gives accurate values within a relatively 
small Nk by using the three-dimensional Euler-Maclaurin summation formula. Since 
the partial derivatives of any order are continuous and have the same values at the 
points separated by b,-vectors, the magnitude of R, is limited to 

J Hama and M Wafanabe 

where E,, denotes the Bernoulli number with Eo = 1 and (0,)' = l/na. In 
(29), m, are the cut-off values in an asymptotic series chosen appropriately to 
reduce lRNl for a given set of no. This is a reason why the special-point method is 
effective because I R,I can be reduced to a very small value if f(q) is a well behaved 
function. Equation (2.9) is also applicable to the correctly weighted n method. 

An improvement of the special-point method which takes quadratic interpolation 
into account is as follows. For simplicity we consider at present a onedimensional 
integral 

(2.10) 

where qj = -+ + j h  with h = l /n.  We approximate f(q) by using the three-point 
interpolation formula as 

f ( q )  = fj +(1 /2h){f j+ ,  - f j - l  +bhIhZ- (q-qj )21f~ ) } (q -qj )+(1 /2hZ) ( f j+ ,  

- 2 f j  + f j - l  - h h 2 1 h 2 - ( q - q j ) ? l f ( 4 ) ( 5 ) ) ( q - 9 j ) 2  (2.11) 

+ 3 ( f 3  + fs + . . . + fSn)l + (21 /640n4) f '4 ) (E) .  

with qj - 3 h / 2  < 5 < qj + 3h/2 .  Inserting (211) into (2.10), we have 

I = ( 3 / 8 n ) [ 3 ( f 1  + f4 t . . . + f 3 n - 2 )  + 2(f2  + fs + . . . + 
(212) 

The thud-order derivative in (2.11) disappears in the course of integration. Incorpo- 
ration of the quadratic interpolation to the special-point method can be done readily 
by multiplying w ( q j )  by the following factor: 

(&)3n{5+(-)s*) s, = j , - 3 [ & + 2 ) ] + 2  (2.13) 

where [z] denotes the Gauss symbol. For this case, R, is also expressed by (2.8) with 
p = 4 and c = &. Note that no = 3m, with m, as a positive integer. Thus the 
convergence is greatly improved if the magnitudes of partial derivatives higher than 
the fourth order decrease steadily. We have shown that the quadratic interpolation 
is incorporated easily into the present formalism, so that we shall consider only the 
linear cases in the next two sections. 

* 

3. Application to the cubic lattices 

We shall apply the scheme presented in the previous section to the sc, FCC and BCC 
lattices. Although the treatments are essentially equivalent to those by Monkhorst 
and Pack except for giving general formulae of the weighting factors, we shall dcscribe 
the method briefly because those for the FCC and BCC lattices are good references in 
treating the non-primitive tetragonal and orthorhombic lattices. 
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3.1. sc lattice 

W i g  to the 0, symmetry we can restrict j, defined by (2.6) to the region n 2 j, 2 
j ,  > j, 2 $(n + 1) where we take n, = n and a, = 1/2n. With this choice we 
can confine the non-equivalent qj to the IBZ We find the weighting factor to be 

where 6 ( i , j )  denotes the Kronecker delta and N = n3. 
In order to obtain simple schemes for finding general formulae for the special 

points and their weighting factors for non-primitive Bravais lattices, we take the BZ 
of the s C  lattice having the lattice constant a = $ao with a. as the lattice constant of 
the respective non-primitive lattices. The BZ of the sc lattice is twice and four times 
those of the BZS of the FCC and BCC lattices, respectively. Note that a wavevector 
is expressed in units of 2n/a. Since the scheme with an odd n cannot reduce the 
non-equivalent 8-points in comparison with the sc case, we conline ourselves to the 
scheme with an even n in the following. 

3.2 ECC lattice 

We now consider a point q in the s C  IBZ and introduce a point r ,  defined by 
( i  - q3: 4 - q2,  $ - 4,). The point T~ is equivalent to the point q owing to the 
translational symmetry in the reciprocal lattice. If we take q in the FCC IBZ given 
by n > j, > j ,  2 j, 2 i ( n  + 1) and j, < f ( 3 n  + 2) with j, = j ,  + j, + j,, the 
r,-points express all the points not included in the FCC IBZ but included in the SC 
IBZ In order to  exclude the equivalent points which appear on the surface of the FCC 
182, we impose the further constraint that j ,  2 a(3n + 2) for jf = i ( 3 n  + 2). Thus 
we can confine the non-equivalent points to the FCC IBZ and write their weighting 
factors as 

wFcc(P,) = (s/N)I6 -3[J(ji?j2) + h ( j 2 , j d I  + 
x [2-6(4j f ,9n+6)6(4j2 ,3n+2)] .  (3.2) 

3.3. BCC lattice 

Similarly we can confine all the non-equivalent points to the IBZ of the BCC lattice 
defined by n 2 j, 2 j ,  2 j ,  2 i ( n  + 1) and j, < (i)n + 1 with j, = jl + j,. A 
point q inside the BCC IBZ has at most three equivalent points not included in the 
BCC IBZ but included in the sc IBZ which are given by z ,  = { - q z ,  $ - q,, q3},  y, = 
{ a  - q3, - q l ,  q2} and zP = { $ - q,, 7 - q,, ql) where the braces denote that the 
components are arranged in descending order. Considering the cases when some 
of these points including the point q itself are mutually equal, we can express the 
weighting factor as 

1 

wuBcc(qj) = (8/N){24-12[6(j,,jz) + f ( j 2 , j d I  + L 1 6 ( j 1 > j d 6 ( j 2 , j 3 )  

- 6(2.k,3n + 2)[12- 66(.ii,.iz) - 46(.iz>j3) + 6(ji,j2)6(.i2,.i3)11. 
(3.3) 



4588 

In table 1 we tabulate the numbers N,, of non-equivalent points for the special-point 
and n methods. Although there are other possibilities for generating the special 
points and weighting factors, the present scheme with an even n gives the smallest 
number of points for the same order of approximation (2.5). The special paints 
obtained by the cc method correspond to the present points with n = 2",m = 
1?2 ,  ... . 

.I Hama and M Watanabe 

Table 1. Numbers of thc nonzquivalenl p i n &  NI, of the # p i a l - p i n t  and correctly 
weighted tetrahedron inlegration ('n) melhods in the same order of approximations for 
the respective (cubic and hexagonal) lattices Except for (he sc case in the special-point 
method n is an even integer and for the hexagonal lattice, ng is an even integcr, 
ml =[5nl] I and m2 = [fnl]. 

Special-point method 

4. Application to non-cubic lattices 

Owing to lower symmetries the application of the cc method to non-cubic lattices 
becomes more tedious than to the cubic lattices [l, 71. We can, however, show that 
the general formulae for non-cubic lattices are derived easily by using the scheme 
presented in section 2. 

For the hexagonal lattice we take the basis vectors of the reciprocal lattice as 

b, = (27r/a)(l,-l/&,O) 

b, = (27r/c)(O,O,l). (4.1) 

b2 = (27r/a)(I,l/&,O) 

In the reciprocal space we introduce the primitive zone constructed by b,, b2 and b, 
which is 24 times larger than the IBZ of the hexagonal lattice. In this zone we define 
N ( =  n:ns), the number of h-points, by (21) and (2.6) where a, = $ for Q = 1, 2 
with nl = n2 and a3 = 1/2n,. With this choice the remainder R, vanishes except 
for the points ($(mi +mz)n,a,-$&(m, -m2)nia,m3n3c) where ml,mz and 
m3 are arbitrary integers. Using the rotational and translational symmetries of the 
hexagonal lattice, we can show that the non-equivalent k-points are expressed by the 
points in the IBZ defined by 

in, + 1 2 j 2  2 j , >  1 (4.2) j ,  t 2j, < n, + 3 12, 2 j3 2 $(n3 t 1). 
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Here we take n3 to be an even integer because for the same N ,  the scheme with an 
even n3 gives a higher-order approximation than that with an odd nn3. The weighting 
factor for a point qj  can be derived readily as 

Whex(qj)  =(Z/N){[36(j , , l )+26(j , , j , )  -6I&(j, + 2 j z t n i + 3 )  

- W j , , l ) +  6(&,j2)l f & ( & , 1 M j 2 , 1 ) +  121. (4.3) 

The number of non-equivalent points is listed in table 1. 
Acmrding to the present formalism the special points obtained by cc method 

can be derived very easily without the use of the tedious recurrence process. Let us 
consider the parallelepiped zone constructed by b, + 6,, b, and b3 and define the 
k-points in the zone as k = q,(b, f b,) + q2b2 f q3b3. The cc method uses two sets 
of q j :  

( A )  :ql = (j, - 1)/3" j, = l , Z ,  ..., 3m1 

q2 = (3j, - 2)/3" ( 3 j ,  - 1)/3" j ,  = l , Z , ,  . . , 3m1-1 

( B )  :ql = (3j1 - 2)/3" (3j1 - 1)/3" jl = 1,2,. . ,3"'-' 
m,-1 j, = 1,2,. . . , 3m1-1 4, = (j, - 1 ~ 3  

where, for both cases, q3 is the same as (2.6) with a3 = 1/2n3 and n3 = Zm. and 
m, and m3 are positive integers. The non-equivalent q are given by 3q, + Zq, < 1 
and 0 < q3 < k. The quantities N ,  and RZ with R as the shortest lattice vectors for 
the non-vanishing R ,  are given as 

(A)  :N k -  - p1-1(3m1-1 + 1)2m-2 
(B)  : N  - 3m~-1(3m1-2 

respectively, where min means that the smaller value in the arguments is taken. 
Since the Cc method uses (A) and (B) one after the other, the derivations of the 
special points becomes more complicated and Nk increases rapidly as the order of 
approximation becomes higher in comparison with the present method. Scheme (A) 
is essentially equivalent to the present method with nl = 3"" and n3 = Zm3, but 
scheme (B) is less accurate than the present method for the same Nk The general 
formulae for the primitive tetragonal (PT) and body-centred tetragonal (BCT) lattices 
can be derived more easily in the present method than in the method of Lm-Chung, 
which will be discussed in appendix 1. 

In our previous paper [SI we have presented the general formulae for locating the 
k-points in the IBz and their weighting factors of the correctly weighted n method. 
For the hexagonal lattice, however, they do not have the characteristics of the special 
points, although they are correct in view of the correctly weighted TI method. In 
appendix 2 we shall give an improved scheme which has the characteristics of the 
special points using the method presented in this section. 

~2 = min(32m1-1,2,z2msc2) 
R2 = ,in(32mi-2,2,22ma 2 + 1)zm3-, c )  k -  

5. Numerical comparison and discussion 

On application of the special-point method it is expected implicitly that the magni- 
tudes of the Fourier coefficients F(1) decrease more rapidly as R becomes large. 
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However, as shown in section 2 for a moderately vaxying function of C, class the 
special-point method is much more accurate than expected. In table 2 we show the 
relative errors of the integrated values over the sc BZ versus Nk for the function with 
a sharp peak at q = 0 given by (figure 1) 

J Hama and M Watanabe 

The resulls show that, as the peak becomes weak, the special-point method becomes 
accurate. For the same Nk the special-point method is much more effective than the 
TI method owing to the use of an open-type integration formula. 

f1141 

-1.0 0 . 0  1.0 

4/q0 

Flgure 1. Vanation in f i (q)  along lhe [Ill] direction wifh g = 0.95 (-), 0.70 
(- - -) and 0.50 (- - -) and qo = $d. 

If the function, however, has discontinuous derivatives at the BZ boundaries, the 
accuracy reduces to that obtained by a lowest-order Lagrange quadrature of open type, 
which is essentially equivalent to the correctly weighted TI method although the Nk 
used is larger than the special-point method. The TI method is a closed-type Lagrange 
quadrature with linear interpolation and its extension to quadratic interpolation is 
possible to incorporate by multiplying w(q,),by a factor n,[l+ ;(-)'a]. The error 
for the TI method with quadratic interpolation is expressed in the form (2.8) with 
p = 4 and c = &. ?b compare the accuracy of the special-point method with that 
of other methods, we calculated the integrals over the sc BZ of the following two 
types of function: one has a sharp peak at the centre of the BZ and the other rapidly 
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Table 2. Relative ermm (absolute valuer) of the integrated valuer over the Sc BZ of 
f z ( q )  with g = 0.95,0.70 and 050 versus the number Nk of non-equivalent points: S, 
special-point method; ?: tetrahedron method; G, Gaussian method. 
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Nk 

0.95 s 
T 
G 

0.70 S 
T 
G 

050 s 
T 
G 

- 4 

1.9 x 10-2 
1.3 
5.0 x 10-3 

1.6 x lo-' 
7.0 x lo-' 
2.4 x 10-4 

8.3 x 10-3 
5.8 x 10-1 
1.3 x IO-' 

10 

4.7 x 10-3 
1.1 x 10-1 

1.8 x 1 0 - ~  

4.1 x 10-4 

3.1 x 10-4 
9.5 x 10-~ 
8.7 x 10-~ 

6.6 x lo-' 

2.6 x 

20 

1.8 x 10-8 
2.5 x lo-' 
1.2 x 10-4 

2.8 x 10-4 
2.5 x 10-3 

1.6 x 10-5 
3.3 x 10-4 
1.1 x 10-5 

5.6 X lo-* 

35 

8.7 x 10-4 
8.4 x 10-3 
2.2 x 10-5 

5.2 x 10-5 
3.5 x 10-4 

9.5 x lo-' 
1.6 x 10-5 
7.7 x 10-7 

4.0 x lo-' 

56 

4.7 x 10-4 
3.5 x 10-3 
2.2 x 10-8 

1.1 x 10-5 
5.9 x 10-5 
1.0 x 10-8 

6.3 x lo-' 

2.4 x IO-' 
9.5 x 10-7 

decreases near the BZ boundaries; both of these have discontinuous derivatives at the 
BZ boundaries given by (figure 2) 

where cos(xq,) is interpreted as $[l + co~(Znq,)]"~ in order for f(q) to be a 
periodic function. 'Ihble 3 shows the relative errors of the integrated values over the 
sc BZ The results show that the convergence of the special-point method with respect 
to Nk is much slower than the improved schemes. Although the TI method is also 
used frequently for h-space integration, its accuracy is not good for a small number 
Nk. Note that the ordinal TI method is less accurate than the correctly weighted Ti 
method [SI. 

For k-space integration, atmost all the theories adopt equally spaced abscissae. 
There is, however, no positive reason that we must use them except for simplicity, so 
that it is interesting to apply the Gaussian integration method with non-equally spaced 
abscissae, which uses an interpolation scheme based on orthogonal polynomials, to 
the present problem. Its incorporation into the present formalism can be done 
readily by multiplying the weighting factors resulting from orthogonal polynomials 
191. Using the Legendre polynomials, we have calculated the integrals for fi, fi 
and f3. The results given in tables 2 and 3 show that the Gaussian method is 
excellent. It also gives much better values than the special-point method does for 
such a function with a divergent point in the BZ as f, = [ l  - E, cos(2nq,)]-* 
which was treated by Macot and Frank. The relative errors for the Gaussian (special- 
point) method are 1 . 2 4 ~  lo-', 2 . 5 6 ~ 1 0 - ~ ,  5 . 6 3 ~  1 . 3 7 ~ 1 0 - ~  and 3 . 4 3 ~  
( 1 . 4 7 ~  10-1,6.9ix10-2,3.45x10-z,1. i2x and 8 . 6 0 ~ 1 0 - ~ )  for Nk = 4,20, 
120, 816 and 5984, respectively. However, the Gaussian method with the Chebyshev 
polynomials of first kind is less effective than the special-point method. 
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1 .a 

0.5 

-1  . o  0.0 1 .o 

q’s, 

Figure 2. Variation in f i ( q )  (- - -) and f 3 ( q )  (-) along the [111] direction with 
qo = ;A. 

Appendix 1 

Special points and their weighting factors for the tetragonal lattices are considered in 
this appendix. 

Al.1. Primitive tetragonal lattice 

Let us introduce N ( =  n:n3) number of k-points given by (2.1) and (2.6) in 
the BZ where a, = 1/2n,, n, = n, and the basis vectors are defined by 
b1 = 27r( l /a ,0 ,0) ,  b, = 27r(O,l/u,O) and b3 = 27r(O,O,l/c) with a and c 
as the lattice constants. From symmetry considerations we can show that all the non- 
equivalent points are expressed by the points in the IBZ defined by $ > q1 > q2 2 0 
and f 3 q3 9 0. The weighting factor for a point q is written as 

(Al.l) wPT(qj) = ( 1 / ~ ) [ 2  - ‘(q1- q2)1 I-Jr2 - ‘ ( q a ) ~  
Q 

where 6 ( q )  = 1 and 0 for q = 0 and otherwise, respectively. 

AI.2. Body-centred tetragonal lattice 

We consider the PT BZ whose lattice constants given by a = f a ,  and c = fco  with 
a, and c,, as those of the BCT lattice. In the PT BZ we introduce N ,  the number of 
12-points, similarly to the method in section Al.1 where we assume that n1 and n3 
are even integers. The non-equivalent 12 are expressed in the BCT IBZ by 
1 5 1 3 43 2 0 $(C2 + a 2 )  > C2Q1 + a2q3. 5 2 91 2 q 2  L 0 fr > 41 + 42 

(A1.2) 
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Table 3. Relative e m a  (absolute valua) of the integrated values over the sc BZ for 
fz(q) and h ( q )  with g = 0.95 and 0.70. The notation is the same BS in table 2 and the 
subscripfs 1 and 2 attached to the S and T mean the linear and quadralic inlerpolation 
schemes, respeaively. 

Nk 4 10 U) 3s 56 

h ( P )  

0.9s s, 4.3 x 10-3 2.2 x 10-3 1.3 x 1 0 - ~  9.0 x io-' 6.5 x io-' 
sz 3.3 x 10-3 7.1 x 10-4 2.6 x 10-4 1.2 x 10-4 

T? 3.5 x 10-2 3.8 x 10-3 9.7 x io-' 3.6 x 10-4 1.6 x 10-4 
0 2.8 x io-' 1.5 x 10-5 1.1 x 10-7 2.7 x 10-7 2.6 x 10-8 

0.70 s1 2.0 x 10-2 8.9 x 10-3 5.0 x 10-3 3.2 x 10-3 2.2 x 10-3 
.s 8 . 2 ~  10-3 2.4 x 10-4 1.1 x 10-5 1.2 x 10-5 

T~ 2.0 x io-* 5.2 x io-' 2.5 x 10-5 2.7 x 10-5 1.5 x 10-5 
G 1.5 x 10-4 1.2 x 10-8 <LO x 10-9 <LO x 10-9 <LO x i o - g  

f 3 ( d  

0.9s s, 2.1 10-2 1.0 x 10-2 5.9 x 10-3 3.9 x 10-3 2.7 x 10-3 
sz 4.3 x 10-2 7.2 x 10-3 2.2 x 10-3 8.2 x 10-4 
Tz 8.3 x IO-' 1.3 x lob2 1.7 x 1.6 x 2.4 X 
G 1.7 x I O F z  4.6 x lob3 1.8 x lo-' 8.5 x lo-' 4.5 X lo-' 

0.70 SJ 2.6 x 1.2 x 6.4 x 4.1 x 2.1 X 
sz 5.2 x 10-2 3.3 x 10-3 4.8 x 10-4 4.1 x 10-5 
T~ 2.4 x io-' 7.6 x 10-3 1.4 x 10-3 1.1 x 10-4 5.5 x 10-5 
G 5.9 x 5.5 x lo-' 6.9 x lo-' 1.2 x lo-' 3.9 x lo-' 

In order to exclude several equivalent points appearing on the surface of the BcT BZ, 
we impose a further constraint on (A1.2) given by 

1 4 /  > q3 for c2ql + a2q3 = $(az  + c2) (A1.3) 
A point (qI, q,, q3) defined by (A1.2) and (AI.3) have at most three equivaIent points 

Note that the reciprocal-lattice vectors are expressed in terms of the basis vectors of 
the PT lattice. Considering cases in which some of these including the point q are 
identical, we get the weighting factor as 

$ > q3 for q, = 4, = z 1 

i n t h e P T I B Z g i v e n b y ( ~ - q , , ~ - q , , q , ) ,  (f-q1,q2,+-q3)and ( + - q , , q , , ~ - 4 ~ ) .  1 

W B C d d  = (8/"- 6(4, - ,?,)I12 - 6(q, + 42 - m+ [I - 6(% - $(4, - 3 1  
X [1 - 6(qi - ~ 2 ) 6 ( q 1 +  4, - 5)6(43 1 - $111. (A1.4) 

The non-vanishing points for R ,  are given by R = (mlnla,  m z n l a ,  m3n3c) with 
ml, m, and m3 as integers. The application of the present method becomes simpler 
if we set a = c in (A1.2) and (A1.3) although some of the special points are outside 
the 3CT I B Z .  The present method is more general and easier for obtaining the special 
points and their weighting factors than Lin-Chung's method which corresponds to the 
presentmethodwi thn ,=n ,=2m,m=1,2 ,  ... . 

Appendix 2 

In reciprocal space we take the parallelepiped zone whose three edges are given by 
b,, b, and fb3 and locate k-points defined by (2.1) in this zone where q, = j*/n, 
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with nl = n2 and j, = 0,1,. . . , n,. If we take n, to be one half of n3 given in 
section 4, we have the same order of the approximation as the special-point method. 
In the following we express 'E, as (j,, j,, j3). From symmetry we can show that the 
following points are equivalent: (jl,j,,j3), (nl - j,, n1 - j,, +), (n ,  - j ,  - j,, 
j,, j,), (j,, n, - j ,  - j,, j,) and those with interchange of j ,  with j,. For a point 
( j , ,  j,,j3) we introduce two types of regular triangular prism whose six vertices are 
on the mesh points given by 

J Hama and M Watanabe 

(a) :(jl? j 2  > j 3  + (jl + j 2 .  j3 + P ) ,  (jl, j, + 1 t j3 + P) 
(b) :(~'1 + l r j z i  j3 + P)>( j i , j z  + P)>(ji + 1 7 ~ ' ~  f l,j3 + P) (-42.1) 
with p = 0, 1. From symmetry considerations we can show that all the non-equivalent 
prisms of (a) and (b) are expressed by the points in the IBZ of the hexagonal lattice 
defined by nl > j, + Zj,, i n l  > j ,  2 j ,  2 0 and n3 > j, 2 0. The weighting 
factors of the prisms (a) and (b) for a point (j,, j2,j,) are given by 

~ , ( / e j )  2 [6 -36 ( j l , j2 )  -36(jl + 2j,,n1 - 1)-6(2j1 + j z , n , -  1) 

+ 26(&,&)6(3j1,n1- 111 (-42.2) 

+26(j1,j,)6(3j1,nl-2)111 -&(A + j z , n l -  111 w - 3 )  

W b ( ' E , )  = 2[6-36(j , , j , ) -36(j ,  f j z , n l - 2 ) - 6 ( 2 j l + j z , n ,  - 2 )  

respectively. We now number the vertices of the prisms (a) and (b) as 1, 2, 3 for 
p = 0 and 4, 5, 6 for the corresponding vertices of p = 1 in the order written 
in A2 1) and divide these prisms into three tetrahedra with equal volume ut = 
( $ .  3/lSn~n3)[(2r)'/a2c] following two schemes: 

(A) 1235, 1345,3456 
(B) 1236, 1246, 2456. 
Superpming (A) and (B) with equal weights of $, we can express the 

(2.3) as 
integral 

(-42.4) 

where / e j p r m  denotes the wavevector of the mth vertex of the Ith tetrahedron of the 
pth type of prism which belongs to a point kj.. Equation (A2.4) has the characteristics 
of the special points. Application of (A2.4) to the calculation for f ( 'E)  inside the 
Fermi surface or on the constant-energy surface can be done readily [SI. 
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